Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Infect Public Health ; 15(4): 437-447, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1828917

ABSTRACT

BACKGROUND: COVID-19 is a new coronavirus that constitutes a great challenge to human health. At this stage, there are still cases of COVID-19 infection in some countries and regions, in which ischemic stroke (IS) is a risk factor for new coronavirus pneumonia, and patients with COVID-19 infection have a dramatically elevated risk of stroke. At the same time, patients with long-term IS are vulnerable to COVID-19 infection and have more severe disease, and carotid atherosclerosis is an early lesion in IS. METHODS: This study used human induced pluripotent stem cell (hiPSC)-derived monolayer brain cell dataset and human carotid atherosclerosis genome-wide dataset to analyze COVID-19 infection and carotid atherosclerosis patients to determine the synergistic effect of new coronavirus infection on carotid atherosclerosis patients, to clarify the common genes of both, and to identify common pathways and potential drugs for carotid atherosclerosis in patients with COVID-19 infection RESULTS: Using several advanced bioinformatics tools, we present the causes of COVID-19 infection leading to increased mortality in carotid atherosclerosis patients and the susceptibility of carotid atherosclerosis patients to COVID-19. Potential therapeutic agents for COVID-19 -infected patients with carotid atherosclerosis are also proposed. CONCLUSIONS: With COVID-19 being a relatively new disease, associations have been proposed for its connections with several ailments and conditions, including IS and carotid atherosclerosis. More patient-based data-sets and studies are needed to fully explore and understand the relationship.


Subject(s)
COVID-19 , Carotid Artery Diseases , Induced Pluripotent Stem Cells , Carotid Artery Diseases/complications , Computational Biology , Humans , SARS-CoV-2
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.03.490381

ABSTRACT

While SARS-CoV-2 pathogenesis has been intensively investigated, the host mechanisms of viral clearance and inflammation resolution are still elusive because of the ethical limitation of human studies based on COVID-19 convalescents. Here we infected Syrian hamsters by authentic SARS-CoV-2 and built an ideal model to simulate the natural recovery process of SARS-CoV-2 infection from severe pneumonia. We developed and applied a spatial transcriptomic sequencing technique with subcellular resolution and tissue-scale extensibility, i.e., Stereo-seq, together with single-cell RNA sequencing (scRNA-seq), to the entire lung lobes of 45 hamsters and obtained an elaborate map of the pulmonary spatiotemporal changes from acute infection, severe pneumonia to the late viral clearance and inflammation resolution. While SARS-CoV-2 infection caused massive damages to the hamster lungs, including naive T cell infection and deaths related to lymphopenia, we identified a group of monocyte-derived proliferating Slamf9+Spp1+ macrophages, which were SARS-CoV-2 infection-inducible and cell death-resistant, recruiting neutrophils to clear viruses together. After viral clearance, the Slamf9+Spp1+ macrophages differentiated into Trem2+ and Fbp1+ macrophages, both responsible for inflammation resolution and replenishment of alveolar macrophages. The existence of this specific macrophage subpopulation and its descendants were validated by RNAscope in hamsters, immunofluorescence in hACE2 mice, and public human autopsy scRNA-seq data of COVID-19 patients. The spatiotemporal landscape of SARS-CoV-2 infection in hamster lungs and the identification of Slamf9+Spp1+ macrophages that is pivotal to viral clearance and inflammation resolution are important to better understand the critical molecular and cellular players of COVID-19 host defense and also develop potential interventions of COVID-19 immunopathology.


Subject(s)
Acute Disease , Adenocarcinoma, Bronchiolo-Alveolar , Pneumonia , Severe Acute Respiratory Syndrome , Carcinoma, Renal Cell , COVID-19 , Inflammation , Lymphopenia
3.
Journal of infection and public health ; 2022.
Article in English | EuropePMC | ID: covidwho-1756154

ABSTRACT

Background COVID-19 is a new coronavirus that constitutes a great challenge to human health. At this stage, there are still cases of COVID-19 infection in some countries and regions, in which ischemic stroke (IS) is a risk factor for new coronavirus pneumonia, and patients with COVID-19 infection have a dramatically elevated risk of stroke. At the same time, patients with long-term IS are vulnerable to COVID-19 infection and have more severe disease, and carotid atherosclerosis is an early lesion in IS. Methods This study used human induced pluripotent stem cell (hiPSC)-derived monolayer brain cell dataset and human carotid atherosclerosis genome-wide dataset to analyze COVID-19 infection and carotid atherosclerosis patients to determine the synergistic effect of new coronavirus infection on carotid atherosclerosis patients, to clarify the common genes of both, and to identify common pathways and potential drugs for carotid atherosclerosis in patients with COVID-19 infection Results Using several advanced bioinformatics tools, we present the causes of COVID-19 infection leading to increased mortality in carotid atherosclerosis patients and the susceptibility of carotid atherosclerosis patients to COVID-19. Potential therapeutic agents for COVID-19 -infected patients with carotid atherosclerosis are also proposed. Conclusions With COVID-19 being a relatively new disease, associations have been proposed for its connections with several ailments and conditions, including IS and carotid atherosclerosis. More patient-based data-sets and studies are needed to fully explore and understand the relationship.

4.
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260139

ABSTRACT

COVID-19 is a huge threat to global health. Due to the lack of definitive etiological therapeutics currently, effective disease monitoring is of high clinical value for better healthcare and management of the large number of COVID-19 patients. In this study, we recruited 37 COVID-19 patients, collected 176 blood samples upon diagnosis and during treatment, and analyzed cell-free DNA (cfDNA) in these samples. We report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA characteristics reflect patient-specific physiological conditions during treatment. Further analysis on tissue origin tracing of cfDNA reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, we demonstrate the translational merit of cfDNA as valuable analyte for effective disease monitoring, as well as tissue injury assessment in COVID-19 patients.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.04.21258335

ABSTRACT

As of early May 2021, the ongoing pandemic COVID-19 has caused over 160 million of infections and over 3 million deaths worldwide. Many risk factors, such as age, gender, and comorbidities, have been studied to explain the variable symptoms of infected patients. However, these effects may not fully account for the diversity in disease severity. Here, we present a comprehensive analysis of a broad range of patients laboratory and clinical assessments to investigate the genetic contributions to COVID-19 severity. By performing GWAS analysis, we discovered several concrete associations for laboratory features. Based on these findings, we performed Mendelian randomization (MR) analysis to investigate the causality of laboratory traits on disease severity. From the MR study, we identified two causal traits, cholesterol levels and WBC counts. The functional gene related to cholesterol levels is ApoE and people with particular ApoE genotype are more likely to have higher cholesterol levels, facilitating the process that SARS-CoV-2 binds on its receptor ACE2 and aggravating COVID-19 disease. The functional gene related to WBC counts is MHC system that plays a central role in the immune system. The host immune response to the SARS-CoV-2 infection greatly affects the patients severity status and clinical outcome. Additionally, our gene-based and GSEA analysis revealed interferon pathways, including type I interferon receptor binding, regulation of IFNA signaling, and SARS coronavirus and innate immunity. We hope that our work will make a contribution in studying the genetic mechanisms of disease illness and serve as useful reference for the clinical diagnosis and treatment of COVID-19.


Subject(s)
Coronavirus Infections , Infections , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21252822

ABSTRACT

Background: The United Arab Emirates is a major business hub with substantial amount of international travel. Like many other countries, it was greatly affected by the COVID-19 pandemic since late January 2020, with recurring waves of infection. This study aimed at combining genomic and epidemiological data to unravel the source of SARS-CoV-2 introduction, transmission and evolution in the country. Methods: We performed meta-transcriptomic sequencing of 1,067 nasopharyngeal swab samples collected from qRT-PCR positive COVID-19 patients in Abu Dhabi, UAE, between May 9th and June 29th 2020. We investigated the genetic diversity and transmission dynamics of the viral population and analyzed the infection and transmission potential of novel genomic clusters. Within-host SARS-CoV-2 genetic variation was analyzed to determine the occurrence and prevalence of multiple infections. Finally, we evaluated innate host responses during the prolonged period of local infection. Results: All globally known SARS-CoV-2 clades were identified within the UAE sequenced strains, with a higher occurrence of European and East Asian clades. We defined 5 subclades based on 11 unique genetic variants within the UAE strains, which were associated with no significantly different viral loads. Multiple infection of different SARS-CoV-2 strains was observed for at least 5% of the patients. We also discovered an enrichment of cytosine-to-uracil mutation among the viral population collected from the nasopharynx, that is different from the adenosine-to-inosine change previously observed in the bronchoalveolar lavage fluid samples. This observation is accompanied with an upregulation of APOBEC4, an under-studied putative cytidine-uridine editing enzyme in the infected nasopharynx. Conclusions: The genomic epidemiological and molecular biological knowledge obtained in the study provides new insights for the SARS-CoV-2 evolution and transmission. We highlight the importance of sustained surveillance of the virus mutation using genomic sequencing as a public health strategy. Keywords: SARS-CoV-2, meta-transcriptomic sequencing, novel mutations and subclades, co-infection, cyosine depletion, host RNA editing


Subject(s)
COVID-19 , Coinfection
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3754807

ABSTRACT

Background: The United Arab Emirates is a major business hub with substantial amount of international travel. Like many other countries, it was greatly affected by the COVID-19 pandemic since late January 2020, with recurring waves of infection. This study aimed at combining genomic and epidemiological data to unravel the source of SARS-CoV-2 introduction, transmission and evolution in the country.Methods: We performed meta-transcriptomic sequencing of 1,067 nasopharyngeal swab samples collected from qRT-PCR positive COVID-19 patients in Abu Dhabi, UAE, between May 9th and June 29th 2020. We investigated the genetic diversity and transmission dynamics of the viral population and analyzed the infection and transmission potential of novel genomic clusters. Within-host SARS-CoV-2 genetic variation was analyzed to determine the occurrence and prevalence of multiple infections. Finally, we evaluated innate host responses during the prolonged period of local infection.Findings: All globally known SARS-CoV-2 clades were identified within the UAE sequenced strains, with a higher occurrence of European and East Asian clades. We defined 5 subclades based on 11 unique genetic variants within the UAE strains, which were associated with higher viral loads (p<0.001). Multiple infection of different SARS-CoV-2 strains was observed for at least 5% of the patients. We also observed a host-defense mechanism via RNA editing, likely mediated by APOBEC3 rather than ADAR in nasopharyngeal samples.Interpretation: The SARS-CoV-2 epidemic in the UAE was founded by international importation followed by local transmission, leading to prevalent multiple infection and large subclade descendances. While RNA editing mechanisms mutate the viral population, newly arisen genetic variation can contribute to a heavier viral burden. Meta-transcriptomic sequencing can help to determine the transmission patterns of SARS-CoV-2.Funding: Department of Health of Abu Dhabi, UAE and National Natural Science Foundation of China.Declaration of Interests: None to declareEthics Approval Statement: The study was approved by the Abu Dhabi COVID19 Research IRB Committee (approval number DOH/CVDC/2020/1945).


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.28.424622

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However,the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here,we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status, and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones during 2-3 weeks of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34 and IGHV4-39 in COVID-19 patients were more abundant than that of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Subject(s)
Coronavirus Infections , Heavy Chain Disease , COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.28.424630

ABSTRACT

The RNA pseudoknot that stimulates -1 programmed ribosomal frameshifting in SARS coronavirus-2 (SARS-CoV-2) is a possible drug target. To understand how this 3-stemmed pseudoknot responds to the mechanical tension applied by ribosomes during translation, which is thought to play a key role during frameshifting, we probed its structural dynamics under tension using optical tweezers. Unfolding curves revealed that the frameshift signal formed multiple different structures: at least two distinct pseudoknotted conformers with different unfolding forces and energy barriers, as well as alternative stem-loop structures. Refolding curves showed that stem 1 formed first in the pseudoknotted conformers, followed by stem 3 and then stem 2. By extending the handle holding the RNA to occlude the 5' end of stem 1, the proportion of the different pseudoknot conformers could be altered systematically, consistent with structures observed in cryo-EM images and computational simulations that had distinct topologies: the 5' end of the RNA threaded through the 3-helix junction to form a ring-knot, or unthreaded as in more standard H-type pseudoknots. These results resolve the folding mechanism of the frameshift signal in SARS-CoV-2 and highlight the dynamic conformational heterogeneity of this RNA, with important implications for structure-based drug-discovery efforts.

11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.29.424682

ABSTRACT

The influence of the peptide QAKTFLDKFNHEAEDLFYQ on the kinetics of the SARS-CoV-2 spike protein S1 binding to angiotensin-converting enzyme 2(ACE2) was studied to model the interaction of the virus with its host cell. This peptide corresponds to the sequence 24-42 of the ACE2 1 domain, which is the binding site for the S1 protein. The on-rate and off-rate of S1-ACE2 complex formation were measured in the presence of various peptide concentrations using Bio-Layer Interferometry (BLI). The formation of the S1-ACE2 complex was inhibited when the S1 protein was preincubated with the peptide, however, no significant inhibitory effect was observed in the absence of preincubation. Dissociation kinetics revealed that the peptide remained bound to the S1-ACE2 complex and stabilized this complex. Computational mapping of the S1 protein surface for peptide binding revealed two additional sites, located at some distance from the receptor binding domain (RBD) of S1. These additional binding sites affect the interaction between the peptide, the S1 protein, and ACE2.

12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.28.424590

ABSTRACT

As the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread around the globe, effective vaccination protocols are under deployment. Alternatively, the use of convalescent plasma (CP) therapy relies on the transfer of the immunoglobulin repertoire of a donor that has recovered from the disease as a means of passive vaccination. While the lack of an effective antiviral treatment inadvertently increases the interest in CP products, initial clinical evaluation on COVID-19 patients revealed that critical factors determining the outcome of CP therapy need to be defined clearly if clinical efficacy is to be expected. Measurement of neutralizing activity against SARS-CoV-2 using live virus presents a reliable functional assay but the availability of suitable BSL3 facilities for live virus culture restricts its applicability. Instead, the use of pseudovirus particles containing elements from the SARS-CoV-2 virus is widely applied to determine the activity of CP or other neutralizing agents such as monoclonal antibodies. In this study, we present our approach to optimize GFP-encoding lentiviral particles pseudotyped with the SARS-CoV-2 Spike and Membrane proteins for use in neutralization assays. Our results show the feasibility of pseudovirus production using a C-terminal truncated Spike protein which is greatly enhanced by the incorporation of the D614G mutation. Moreover, we report that the use of sodium butyrate during lentiviral vector production dramatically increases pseudovirus titers. Analysis of CP neutralizing activity against particles pseudotyped with wildtype or D614G mutant Spike protein in the presence or absence the M protein revealed differential activity in CP samples that did not necessarily correlate with the amount of anti-SARS-CoV-2 antibodies. Our results indicate that the extent of neutralizing activity in CP samples depends on the quality rather than the quantity of the humoral immune responses and varies greatly between donors. Functional screening of neutralizing activity using pseudovirus-based neutralization assays must be accepted as a critical tool for choosing CP donors if clinical efficacy is to be maximized.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
13.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-59060.v1

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has been causing a global health emergency. Although previous studies investigated COVID-19 at different omics levels, the molecular hallmarks of COVID-19, especially in those patients without comorbidities, have not been fully investigated. Here, we presented a trans-omics landscape for COVID-19 based on integrative analysis of genomic, transcriptomic, proteomic, metabolomic and lipidomic profiles from blood samples of 231 COVID-19 patients, ranging from asymptomatic to critically ill, importantly excluding those with any comorbidities. Notably, we found neutrophils heterogeneity existed between asymptomatic and critically ill patients. Expression discordance of inflammatory cytokines at mRNA and protein levels in asymptomatic patients could possibly be explained by post-transcriptional regulation by RNA binding proteins (RBPs) and microRNAs. Neutrophils over-activation, induced arginine depletion, and tryptophan metabolites accumulation contributed to T/NK cell dysfunction in critical patients. Anti-virus interferons were gradually suppressed along with disease severity. Overall, our study systematically revealed multi-omics characteristics of COVID-19, and the data we generated could hopefully help illuminate COVID-19 pathogenesis and provide valuable clues about potential therapeutic strategies for COVID-19.


Subject(s)
COVID-19 , Critical Illness
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.17.20155150

ABSTRACT

System-wide molecular characteristics of COVID-19, especially in those patients without comorbidities, have not been fully investigated. We compared extensive molecular profiles of blood samples from 231 COVID-19 patients, ranging from asymptomatic to critically ill, importantly excluding those with any comorbidities. Amongst the major findings, asymptomatic patients were characterized by highly activated anti-virus interferon, T/natural killer (NK) cell activation, and transcriptional upregulation of inflammatory cytokine mRNAs. However, given very abundant RNA binding proteins (RBPs), these cytokine mRNAs could be effectively destabilized hence preserving normal cytokine levels. In contrast, in critically ill patients, cytokine storm due to RBPs inhibition and tryptophan metabolites accumulation contributed to T/NK cell dysfunction. A machine-learning model was constructed which accurately stratified the COVID-19 severities based on their multi-omics features. Overall, our analysis provides insights into COVID-19 pathogenesis and identifies targets for intervening in treatment.


Subject(s)
COVID-19 , Critical Illness
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.02.20143032

ABSTRACT

Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, microbial composition of the respiratory tract and other infected tissues, as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Method Between January 27 and February 26, 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients (requiring ICU admission and mechanical ventilation), in the Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. Co-infection rates, the prevalence and abundance of microbial communities in these COVID-19 patients were determined. Findings Notably, respiratory microbial co-infections were exclusively found in 84.6% of severely ill patients (11/13), among which viral and bacterial co-infections were detected by sequencing in 30.8% (4/13) and 69.2% (9/13) of the patients, respectively. In addition, for 23.1% (3/13) of the patients, bacterial co-infections with Burkholderia cepacia complex (BCC) and Staphylococcus epidermidis were also confirmed by bacterial culture. Further, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes in one severely ill patient was demonstrated, which might be the primary cause of his disease deterioration and death one month after ICU admission. Interpretation Our findings identified distinct patterns of co-infections with SARS-CoV-2 and various respiratory pathogenic microbes in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking of BCC-associated nosocomial infections are recommended to improve the pre-emptive treatment regimen and reduce fatal outcomes of hospitalized patients infected with SARS-CoV-2. Funding National Science and Technology Major Project of China, National Major Project for Control and Prevention of Infectious Disease in China, the emergency grants for prevention and control of SARS-CoV-2 of Ministry of Science and Technology and Guangdong province, Guangdong Provincial Key Laboratory of Genome Read and Write, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, and Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics.


Subject(s)
Coinfection , Pneumonia, Staphylococcal , Bacterial Infections , Cross Infection , Communicable Diseases , Death , COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.26.173203

ABSTRACT

The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Author summaryIn this study, we compared SARS-CoV-2 populations of 13 Chinese COVID-19 patients. Those viral populations contained a considerable proportion of viral sub-genomic messenger RNAs (sgmRNA), reflecting an active viral replication activity in the respiratory tract tissues. The comparison of 66 identified intra-host variants further showed a low viral genetic distance between intra-household patients and a narrow transmission bottleneck size. Despite the co-existence of genetically distinct viruses within the same host, most intra-host minor variants were not shared between transmission pairs, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions. Furthermore, the narrow bottleneck and active viral activity in the respiratory tract show that the passage of a small number of virions can cause infection. Our data have therefore delivered a key genomic resource for the SARS-CoV-2 transmission research and enhanced our understanding of the evolutionary dynamics of SARS-CoV-2.


Subject(s)
COVID-19
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.13.149690

ABSTRACT

A few animals have been suspected to be intermediate hosts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a large-scale single-cell screening of SARS-CoV-2 target cells on a wide variety of animals is missing. Here, we constructed the single-cell atlas for 11 representative species in pets, livestock, poultry, and wildlife. Notably, the proportion of SARS-CoV-2 target cells in cat was found considerably higher than other species we investigated and SARS-CoV-2 target cells were detected in multiple cell types of domestic pig, implying the necessity to carefully evaluate the risk of cats during the current COVID-19 pandemic and keep pigs under surveillance for the possibility of becoming intermediate hosts in future coronavirus outbreak. Furthermore, we screened the expression patterns of receptors for 144 viruses, resulting in a comprehensive atlas of virus target cells. Taken together, our work provides a novel and fundamental strategy to screen virus target cells and susceptible species, based on single-cell transcriptomes we generated for domesticated animals and wildlife, which could function as a valuable resource for controlling current pandemics and serve as an early warning system for coping with future infectious disease threats.


Subject(s)
COVID-19 , Communicable Diseases
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.09.20126607

ABSTRACT

The COVID-19 pandemic has accounted for more than five million infections and hundreds of thousand deaths worldwide in the past six months. The patients demonstrate a great diversity in clinical and laboratory manifestations and disease severity. Nonetheless, little is known about the host genetic contribution to the observed inter-individual phenotypic variability. Here, we report the first host genetic study in China by deeply sequencing and analyzing 332 COVID-19 patients categorized by varying levels of severity from the Shenzhen Third Peoples Hospital. Upon a total of 22.2 million genetic variants, we conducted both single-variant and gene-based association tests among five severity groups including asymptomatic, mild, moderate, severe and critical ill patients after the correction of potential confounding factors. The most significant gene locus associated with severity is located in TMEM189-UBE2V1 involved in the IL-1 signaling pathway. The p.Val197Met missense variant that affects the stability of the TMPRSS2 protein displays a decreasing allele frequency among the severe patients compared to the mild and the general population. We also identified that the HLA-A*11:01, B*51:01 and C*14:02 alleles significantly predispose the worst outcome of the patients. This initial study of Chinese patients provides a comprehensive view of the genetic difference among the COVID-19 patient groups and highlighted genes and variants that may help guide targeted efforts in containing the outbreak. Limitations and advantages of the study were also reviewed to guide future international efforts on elucidating the genetic architecture of host-pathogen interaction for COVID-19 and other infectious and complex diseases.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20124305

ABSTRACT

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. Detection of individuals at high risk for critical condition is crucial for control of the disease. Herein, for the first time, we profiled and analyzed plasma cell-free DNA (cfDNA) of mild and severe COVID-19 patients. We found that in comparison between mild and severe COVID-19 patients, Interleukin-37 signaling was one of the most relevant pathways; top significantly altered genes included POTEH, FAM27C, SPATA48, which were mostly expressed in prostate and testis; adrenal glands, small intestines and liver were tissues presenting most differentially expressed genes. Our data thus revealed potential tissue involvement, provided insights into mechanism on COVID-19 progression, and highlighted utility of cfDNA as a noninvasive biomarker for disease severity inspections.


Subject(s)
Pneumonia , Death , COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.23.20100024

ABSTRACT

The vastly spreading COVID-19 pneumonia is caused by SARS-CoV-2. Lymphopenia and cytokine levels are tightly associated with disease severity. However, virus-induced immune dysregulation at cellular and molecular levels remains largely undefined. Here, the leukocytes in the pleural effusion, sputum, and peripheral blood biopsies from severe and mild patients were analyzed at single-cell resolution. Drastic T cell hyperactivation accompanying elevated T cell exhaustion was observed, predominantly in pleural effusion. The mechanistic investigation identified a group of CD14+ monocytes and macrophages highly expressing CD163 and MRC1 in the biopsies from severe patients, suggesting M2 macrophage polarization. These M2-like cells exhibited up-regulated IL10, CCL18, APOE, CSF1 (M-CSF), and CCL2 signaling pathways. Further, SARS-CoV-2-specific T cells were observed in pleural effusion earlier than in peripheral blood. Together, our results suggest that severe SARS-CoV-2 infection causes immune dysregulation by inducing M2 polarization and subsequent T cell exhaustion. This study improves our understanding of COVID-19 pathogenesis.


Subject(s)
Lymphoma, T-Cell , Pleural Effusion , Pneumonia , Chronobiology Disorders , COVID-19 , Lymphopenia
SELECTION OF CITATIONS
SEARCH DETAIL